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A nonvariational approach for determining the ideal MHD stability of axisymmetric 
toroidal confinement systems is presented. The code (NOVA) employs cubic B-spline finite 
elements and Fourier expansion in a general flux coordinate (+, 8, c) system. At least as much 
accuracy and faster convergence were obtained in comparison with the existing variational 
PEST and ERATO codes which employ linear linite elements. This nonvariational approach 
benchmarked here on the ideal MHD problem is a prelude to a future extended version 
applicable to problems having non-Hermitian eigenmode equations where variational energy 
principles cannot be obtained. ‘r’ 1987 Academic PRS,, Inc. 

I. INTRODUCTION 

Linear stability stability analysis of magnetohydrodynamic (MHD) modes in 
axisymmetric toroidal plasmas is crucial to thermonuclear fusion research. In par- 
ticular, ideal MHD instabilities are thought to play an important role in limiting 
the p-values of tokamak devices. The mathematical problem is to solve the two- 
dimensional eigenmode equations and obtain the growth rates of the MHD 
instabilities. The exact solutions are impossible to obtain without the use of 
numerical computations. A number of two-dimensional normal mode codes [l-6] 
have been developed extensively to study the dependence of ideal MHD instabilities 
on a variety of parameters relating to the the geometry as well as the pressure and 
current profiles. As practical tools, they are used to aid in the design of new 
experiments and in the analysis of experimental data. All these ideal MHD codes 
utilize a Lagrangian formalism [7] for linearized perturbations and involve the use 
of the linear Galerkin procedure, which reduces the problem to the minimization of 
an algebraic quadratic form with respect to a certain set of variational parameters. 
The variational calculation is then reduced to the determination of eigenvalues and 
eigenfunctions of the matrix eigenvalue problem. Nonetheless, these codes have 
inherent limitations in their applications to various ideal MHD stability calculation 
and in their extensions to the nonideal MHD stability calculations. With the PEST 
code [l], for example, the choice of representation of the displacement vector 
prevents the stability analysis of equilibria where the toroidal field vanishes in 
plasmas, such as in the spheromak and reversed field pinch configurations. The 
PEST-2 [6], which is basically a numerical treatment of the energy principle, has 
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eliminated this restriction, but has a major shortcoming in that it does not caiculatc 
the real physical growth rates or eigenfunctions of the ideal MHD instabilities. In 
addition, an important limitation of these codes is that because of their variationa! 
nature, they cannot be extended to the stability calculations of non-Hermitian 
eigenmode equations, such as in the cases of ideal MHD with equilibrium flows. 
resistive MHD and kinetic MHD etc., where variational energy principies cannot 
be established. 

In this paper, we present a numerical method for integrating ideal MHD 
equations which can be easily generalized to integrate non-Hermitian eigenmode 
equations. The code (NOVA) does not involve variational energy principles. All 
these variational ideal MHD stability codes employed linear finite elements in the 
minor radius direction, which are the lowest order finite elements allowed for 
representing the displacement vector 5. Since they are in quadratic forms. the 
numerical errors in the eigenvalues, 07, scale as IL’-‘, where .h: is the total number 
of the radial computational grid points. Therefore, our nonvariational approach 
requires higher order finite elements to achieve better accuracy and faster con- 
vergence. For esample, with the cubic B-spline finite elements [S] the errors in U’ 
scale as N-“. In a general flux coordinate ($, 8. 5) system with an arbirrar:? 
Jacobian, the NOVA code employs Fourier expansion in the poloidal angle 8. as :n 
the PEST code: and the cubic B-spline finite elements in the radiai coordinate, $i 
direction. An arbitrary nonuniform $-mesh. which still maintains the N ’ con- 
vergence property, is set up to provide the option of zoning the mesh to allow mere 
finite elements near rational surfaces, the plasma edge, and the magnetic ax&. Ln 
comparison with these existing variational ideal MHD stability codes, the NOVA 
code is at least as fast and accurate. However, if the existing variational ideal MHD 
stability codes are upgraded to employ higher order finite elements, they may he 
equally or more efficient than the NOVA code. 

In the following, we first briefly describe in Section II the MHD equilibrium and 
present a class of generalized toroidal coordinate system which can greatly improve 
the representation of various MHD instabilities. In Section III. we present the ideal 
MHD eigenmode equations [S] and the corresponding boundary conditions for 
our nonvariational treatment. The numerical methods used to solve the eigenmode 
equations are described in Section IV. Convergence studies of the NOVA code are 
presented for the analytical Solovev equilibrium [lo], and detailed comparisons. as 
presented with other variational codes [ 111, are given in Section V. Several 
applications of the NOVA code to numerical tokamak equilibria have indicated 
the accuracy and efficiency of this method, and are described in 
Section VI. In Section VII, we summarize the principal conclusions of this work. 

II. T~ROIDAL MHD EQUILIBRIUM AND FLLX COORDINATE SYSTEM 

We consider stationary ideal MHD equilibria statisfying 

JxB=VP, VxB=J, and Vm = 0, Iii 
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where J, B, and P are the equilibrium current density, magnetic field, and pressure, 
respectively. In terms of the flux coordinate system (+, 8, <), the equilibrium 
magnetic field with nested magnetic surfaces can be written as 

B=V[xV$+q($)V$xVO, (2) 

where 27c$ is the poloidal flux within a magnetic surface, q($) is the safety factor, 19 
is the generalized poloidal angle varying between 0 and 27c, and [ the generalized 
toroidal angle varying between 0 and 2n. Since 

(3) 

where the Jacobian $ is defined by 

~~-‘=V*xV%*V~, (4) 

the magnetic field lines are straight in this coordinate system. 
For axisymmetric equilibria, we can also express the equilibrium magnetic field 

as 

B=VdxW+silCI)Vd, (5) 

where 4 is the toroidal angle in the usual cylindrical coordinate (X, 4, 2) system. 
Then $ can be determined numerically by solving the Grad-Shafranov equation, 

4**zxw. = -(x*P’+ gg’), (6) 

if P($) and g(e) are specified. Here, the prime denotes the partial derivative with 
respect to $. We can write the generalized toroidal angle i as 

5=d-q4R ti), (7) 

where cS(LJ, I/I) is periodic in 8. Then from Eqs. (2) and (5), 6 and d are related by 

q l+$ =$. 
( > 

(8) 

Along a flux surface in the poloidal plane we have 

(9) 

where ds is the element of arc length along a constant (4, *) line. Specification off 
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therefore determines the 6 coordinate. In this paper, we choose the Jacobian in the 
form 

where i, j, k can be freely specified and a($) is given by the requirement that 6 
increases by 27r during one poloidal circuit. The form of d in Eq. (10 j is a trivial 
generalization of that used in the PEST-2 code [67. Thus, from Eq. (9) we have 

For the choice i = 2, j = k = 0, the ($. 0, [) coordinate represents the PEST-l coor- 
dinate. For i = j = 1, k = 0, we have the equal arc length coordinate system. and a 
Hamada-like coordinate system is obtained by letting i = j = k = 0. The choice 
i = j = 0, k = 2 is used in the Hamiltonian representation of the magnetic field [ 121. 

The general flux coordinate system C$, 8, <j constructed here is not orthogonal 
and its metric is complicated because VI/J - Vc # 0, Vd *Vi # 0, VO * V$ # 0, and 
IV[l’ # l/X’. However, < is still an ignorable coordinate for axisymmetric equilibria, 
and the perturbed quantities can be represented by a single mode varying as 
exp( -in<). 

III. LINEARIZED IDEAL MHD EICENMODE EQUATIONS 

Let 5, b, p, be the perturbed quantities for the plasma displacement, magnetic 
field, and plasma pressure, respectively. Taking the time dependence 
5(x, t) = k(x) exp( - iwt) and applying the Laplace transform, the linearized ideal 
MHD equations governing the asymptotic behaviors of the perturbed quantities are 
given by 

p, +~-vP+y,Pv~~=o, (12) 

pco2~=Vp1+bx(VxB)+Bx(Vxb), (13) 

and 

b=Vx (kxB), (14‘1 

where 11, = 3 is the ratio of specific heats, p is the plasma equilibrium density. and 
the initial source perturbations have been neglected because we are not interested in 
the transient phenomena. We decompose the displacement vector and perturbed 
magnetic field as 
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Q 
b= IV*,’ 

--Qy+ &+W)+~~, (16) 

so that 

Q &(BxV$) 5 B2 ' and Qh=b.B. 

The three components of the momentum equation, Eq. (13), obtained after taking 
the scalar products with V$, BxV$, and B, can be rewritten as 

+(jV@/‘S-B-J) ~(B.VC,-SC,l+2K.V*Q,, 

+2K.(BxV$)Q,, 

and 

o”p&,=B-V(p, + P'&,), 

(17) 

(18) 

(19) 

where P, = PI + b. B is the total perturbed pressure, P'= SP/drl/, K = (B/B). 
V(B/B) is the magnetic field curvature, and S = (B x V$/(V$j ‘) - Vx (B x VI/I/\V$/ *) 
is the negative local magnetic shear. Similarly, the three components of the induc- 
tion equation, Eq. (14), can be written as 

Q+ = B*VSti> (20) 

Qsqy2 (B . V<,, -- S&L): 

(22) 
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and V. 5 can be expIicitiy expressed as 

~-JOW 46, Q,, Qs. and Qb can be eliminated by using Eqs. (19)-(22) and from 
Eqs. (12 1, (17), (IS), and (23) the linearized ideal MHD eigenmode equation can be 
cast into the form [9] 

and 

E(vt;!=F(;;). (25) 

where C, D, ~7, F are 2 x 2 matrix operators involving only surface derivatives 
and (B x Vlr/) . V. The matrix operators are given by 

D= 

F= 
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where in Eqs. (26)-(29), B * V operates on all the quantities on its right side, and 
also note that in E,q. (24)-(29), 

G=cu2p+2P'K,+ IV$12B.V +(B+S,V$,‘)T, 

k;l,=K*V$, K=K BxVti and 5 ‘7’ 

The boundary condition at the magnetic axis is t,,, = 0. For fixed boundary 
modes the boundary condition is tti = 0 at the plasma-wall interface. For free boun- 
dary modes the boundary condition at the plasma-vacuum interface is given by 
b, . VI) = B * Vt,, where b, is the vacuum magnetic field which must be solved from 
the divergence-free equation V. b, = 0. 

For a given equilibrium we first solve r, and V* 5 in terms of P, and tti from 
Eq. (25) by inverting the surface matrix operator E. Equation (24) then reduces to 
an equation for P, and tti. Admissible regular solutions must be periodic in both 0 
and i, and satisfy the appropriate boundary conditions. This procedure fails if the 
inverse of the surface matrix operator E does not exist for a given (r) at some $ sur- 
face. Then only non-square-integrable solutions with spatial singularities at the 
singular surface are possible. If at each surface nontrivial single-valued periodic 
solutions in 0 and [ can be found for the equation 

the corresponding set of eigenvalues o2 forms the continuous spectrum for the 
equilibrium [ 13, 141. Equation (30) represents the coupling of the sound waves and 
the shear Alfvkn waves through the surface component of the magnetic curvature 
and the plasma pressure. Equations (24) and (25) represent the toroidal 
generalization of the set of eigenmode equations derived by Appert et al,, [15] for 
the circular cylindrical pinch. 

IV. NUMERICAL. METHODS 

The eigenmode equations, Eqs. (24) and (25), are solved by the Galerkin method, 
where the eigenfunction is represented by a linear superposition of a finite subset of 
a complete set of basis functions. We first represent the perturbed quantities by a 
finite Fourier series in 8. 

(31) 
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where the summation over 112 is truncated to a total number of L poloidal har- 
monics, and n is the toroidal mode number. The equilibrium quantities are defined 
on M O-points, where A4 is usually much larger than L. The elimination of t, an.d 
V * 5 proceeds by finding the algebraic Fourier matrix representation of the surface 
operators C, D, E, and F. Introducing the bracket notation, 

E,,,,, = (rn’l E Im> -k$ dO[exp( -irn’O)] E[exp(f&)], (32) 

Eq. (25) reduces to 

where the Fourier indices 111’ and m have the same truncated domain. Note that the 
evaluation of the algebraic matrix operations, E,,,,,,, etc., involves convolutions that 
occur in evaluating operator products and is done by employing FFT (Fast Fourier 
Transform). To avoid aliasing errors, a larger truncated Fourier series domain than 
L, say L*, is imposed on E,,,., and F,,,.,,, for inverting E,,,,, in Eq. (33). Now E,,? ,i, 
can be inverted to obtain t,,,,, and (V-g),, in terms of P,,,, and <*,,,, through a 
jL* x L* j matrix inversion. Note L* is increased until the values of 5,,,1 and (V - k),,, 
are satisfactorily converged. Finally by eliminating Pi,i, in favor of tti,,, Eq. (24) is 
reduced to a set of L second-order differential equations. 

where the KS are algebraic L x L matrices and are functions of Y only, where 
r = ($#mt) I2 and <,,=< e,m/~ is a vector of dimension L. The explicit expressions of 
the Rs are too tedious and complicated to present in full detail here. The boundary 
conditions at the magnetic axis are now modified to i,,, = 0 for f~?’ # ‘, and 
?<,i’dr = 0 for /7? = 1. 

We mention here that the MHD fast wave spectrum is best calculated 
numerically using the coupled sets of first order equations given by Eqs. (24) and 
(25), rather than the second order equation, Eq. (34) because of the apparent 
singularity in Eq. (34) related to those frequencies. 

Equation (34) is integrated by employing cubic B-spiine finite elements [a, 161 
with the representation 

.v + ? 

4,,,(r) = 2 5,wku,(r), 
k=l 

(35: 

where the U’s are the cubic B-spline finite elements, N is the total number of radial 
grid points, and we require (N+ 2) cubic B-spline elements with N> 5. The cubic 
B-spline elements are localized piecewise cubic polynomials occupying four grid 



132 CHENG AND CHANCE 

Typical B-Spline 

FIG. 1. Typical cubic B-spline finite element for a uniform grid. 

intervals with continuity up to second derivatives, and are shown in Fig. 1. The 
errors in this representation scale as N-” even for nonuniform grids [S]. Note that 
the cubic spline has the property of minimum curvature among all third order 
polynomials. For a detailed description of the cubic B-spline finite elements 
interested readers are referred to Ref. [S]. 

Now operating on Eq. (34) with the projection operator, 0, = JA dr U,, we 
obtain a set of algebraic equations 

where A4;::’ is an (N + 2) L x (N + 2 j L matrix with nonvanishing elements along its 
L2 7-banded diagonals. The errors associated with the Gibbs phenomena, which 
could be present when using higher order elements to represent functions contain- 
ing regions with singular-like behavior, can be reduced by using an unequal grid 
spacing with packing near these regions. Because of the integral method employed 
here, the subsequent error in the matrix elements should be negligibly small when 
the projection operation is carried out. After imposing the boundary conditions to 
modify the matrix M, the nontrivial solution of Eq. (36) can be obtained by requir- 
ing 

f(w2) = det lJI(w’)I = 0. (37) 

The eigenvalue problem is therefore nonlinear in w2 and its numerical solution 
must be found by iteration. Convergence is assumed if 1 [f(oz+ I) -f(w~)]/~(c$)\ 
<E,. and/or (CL);,, - ~$1 < E*, where E, and .s2 are appropriate small numbers, and p 
denotes the iteration step. When the eigenvalue iteration is converged to the 
required accuracy, Eq. (36) is used to construct the eigenvectors 5 and P,. For this 
purpose, the matrices C, D, E, F for each surface are saved in disk tiles when they 
are computed during the calculation of the matrix elements of M$!‘. To make sure 
that the most unstable eigenvalue is obtained, we first locate all the unstable roots 
by evaluating f(w’) at o,Z values over a large domain say [wf < c$ <oz]. If 
f(wl)f(ws) < 0, then there must be at least one root between 0: and 0:. Usually w: 
is decreased to a larger negative value to ensure a complete result. For the non- 
ideal MHD problem, o is usually complex and there are several ways to search for 
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the eigenvalue. One way is to employ the Cauchy theorem to search for the number 
of zeros off(w) over a certain complex o-domain, although at the cost of greater 
computer time. When a zero is located in a certain w-domain, a higher order com- 
plex root finder using the Muller method can be applied to obtain the converged 
eigenvalue efficiently. 

The iteration is expensive computationally because the matrix inversion must be 
carried out for Eq. (33) at each iteration for each surface. Consequently, the 
execution times scale as the total number of radial grid points N as well as L’ for 
the matrix inversion. Finally, to be consistent we have also employed the cubic & 
spline finite elements to obtain the equilibrium quantities from the mapping codes, 

Next, we consider the vacuum solution of V - b,. = 0 with the vacuum region 
surrounded by a conducting wall. For II # 0 modes, we represent b, = Vz. Then in 
terms of the Green’s theorem we have 

27cx(x,) = J ds,. CG(x,lx.J Vrx.!xt) - x(x,) V,Gtx, I x,)1> (33) 

where we have chosen the Green’s function G to satisfy 

Vf G(x, 1 x,) = 47cr6(x, - x, I, (39) 

and G(x, / x,) = jx, - x,( - ‘. Now x, can be either on the plasma-vacuum interface or 
one the wall, and the integral extends over both surfaces in Eq. (38 1. With the 
boundary conditions Vg!. V$ = B * V;;l, on the plasma-vacuum interface and 
VI * A,,. = 0 on the wall, Eq. (38) can be solved to obtain :! on both surfaces by the 
method of collocation [ 171. 

For the II = 0 mode, the magnetic field cannot be described by a single-valued 
scalar potential. Instead, we follow the precedure of Lust and Martensen [lg] and 
define 

b,=V~+a,Vq5xVa+azVqi (40) 

where a, and a2 are constants related to the perturbed quantities. x can be obtained 
by the same procedure as for II # 0 modes with the additional constraint f x ilt == 0 
due to the singular nature of the matrix in Eq. (38) for the t? = 0 mode. x can be 
solved by taking VI$ -V x b, = 0 and we have [I I] 

= 0. (41) 

The boundary conditions are CI = 1 on the plasma-vacuum interface and x = 0 on 
the wall. Equation (41) again can be solved using Grelen’s theorem 

47&(x,) 
= 

‘ds, . ^ 
? xx ? 

xz [TG(x,l x,) VAx,l- 4x0 VP%, I x,)1> (42) 
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where the Green’s function G satisfies 

&(x,1x,) = -g 6(X,-X,) 6(Z,-Z,), 
s 

and is given by 

G( x, 1 x,) = - 
47rX, 
- P!. ,,,ilV), 

r 

where P 1,,2 is the associated generalized Legendre function, 

r = C(e - c)* + (Z, - Z,)” + 2(e + -q)(Z, - zf)]lf" 
and 

(43) 

11’ = [g +x; + (Z, - Z,)‘] 
r’ (46) 

To determine a, and a2 we make use of the property 

Then, with the aid of the boundary conditions Ax ds, = 0 on the wall and 
A x V$ = ttiB on the plasma-vacuum interface, where A is the vector potential 
defined by b,. = V x A, we obtain 

and 

a,=f(v~xVa).(ri,xA)~~s, 
J jVdxVcl12d3x (47) 

(48) 

where sP denotes the plasma surface and tip = -V$/lV). After we solve the vacuum 
magnetic field b, in terms of tti, we obtain the boundary condition for solving 
Eqs. (24) and (25) at the plasma-vacuum interface 

P, =b,;B= c Al,,,,5,,,,exp[i(nz6-ni)]. 
,n,m’ 

(49) 

Note that P, is related to tti and a<,/@ in Eq. (24). 
This concludes our discussions on the vacuum solutions. For more details, the 

reader is referred to Ref. [ 171. 
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V. CONVERGENCE STUDIES 

To illustrate the convergence properties of the code, we consider the analytic 
Solovtv equilibria [ 101 which have been used previously [ 111 for extensive com- 
parisons of variational ideal MHD stability codes. Our results will be compared 
with the previous results, which provide a series of cross checks essential for 
validating such a large, complex code. The Solovev equilibria which satisfy the 
Grad-Shafranov equation, Eq. (6): with g’ = 0 are given by 

where (X, 4, Z) is a cylindrical coordinate system, B, is the toroidal field at the 
magnetic axis A’= R, P($) is the plasma pressure, and ~(4) is the safety factor 
with the contour of integration along a line of constant $ and 4. The system is 
characterized by the parameters: the ellipticity E, the inverse aspect 
ratio {E- [t+hBq(0)/~ER2Bo])L~2 and q(O). The wall position is specified by 
-4 = hk:hP, and ?rr$, is the total poloidal flux in the plasma. 

To achieve the correct eigenvalue and an accurate representation of the 
corresponding eigenfunction, in principle one requires a very large number of basis 
expansion functions. Since this number is limited by the computer memory and 
computing time, it is necessary to extrapolate from the lower order representations 
to obtain the asymptotic eigenvalue. Fortunately, we need only a few points 
because the extrapolation formulas are simple. 

Numerical convergence is shown below for the small aspect ratio, elliptical case 
with the parameters: R=B,= 1, E=2, .z=f, y(Oj=O.3, .4= I, and n=2. We 
employ a uniform r-mesh of N grid points and retain the poloidal harmonics 
m = C-L,, Lo]. For the equal arc-length 0 coordinate, the convergence curves of 
the eigenvalue (II’= -&) are shown in Fig. 2. Here y’ is normalized in terms of 
B'(O)/p(O) q2(1 j R'. The eigenvalue 1~~ scales as 7’ = 7; + C, exp( -L,/2) for fixed N 
and as $ = yf + C, Ne4 for fixed Lo, where 7: and /1$ are the converged value for 
fixed N and L,, respectively. The results from the PEST code show that yZ scales as 
y2 =y: + D, exp( - L/2) for fixed N, where L = 2L,+ 1, and for fixed L. as 
$ = 11: + Dz Be2. Note that if we use the PEST Q-coordinate, the growth rate from 
our code also scales as y2 = (7: + C, exp( -L/2). Convergence curves from the 
PEST code are also shown in Fig. 2. Detailed comparison between the results of 
our code and those of the PEST code indicates that /C,j -+ lD,I and lC2j 6 lDZl, 
Even with N = 5: our code converges in Lo with an error of less than to/c of its ron- 
verged value. On the other hand, comparable accuracy from the PEST code would 
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N-‘$ lO-3) 

o.,,i~-- _I - 3 4 5 6 7 8 
erpi-Lo/2)W2i 

FIG. 2. Comparisons of convergence results in both the radial and the poloidal directions for our 
nonvariational code and the PEST code. The Solovev equilibrium has the parameters R = B, = 1, E = 2, 
E = 4, q(0) = 0.3, ‘4 = I, and n = 2. The eigenvalue yz is extrapolated numerically in both the number of 
poloidal harmonics and the number of radial finite elements. 

TABLE I 

Comparison of the Eigenvalues $ for Different Solovev Equilibria 
from Various Ideal MHD Stability Codes 

E E A ‘40) 4(a) n Kerner PEST-1 ERATO Degtyarev NOVA 

1.791 2.0 
2.2387 2.5 
0.3 0.5224 
0.7 1.219 
1.2 2.0897 
2.0 3.4829 
0.6 1.0449 
1.0 1.7415 

0.202 0.204 0.211 0.208 
0.504 0.506 0.511 0.508 
0.413 0.427 0.43 1 0.430 0.430 
0.118 0.119 0.120 0.121 0.119 

0.75 0.78 - 0.748 
- 0.68 0.75 0.656 
- 1.31 1.40 1.32 1.35 
- 1.03 1.07 1.06 1.038 



NOVA 137 

-2 
1.4 1.E 

FIG. 3. ta) The poloidal harmonics of the eigenfunction tti versus r and (b) the projection of the 
displacement vector onto the q5 = 0 plane for the converged solution as shown in Fig 2. The y-profile is 
also shown in Fig. 3(a). 

require at least three times as many linear finite elements. The eigenfunction ‘cd, and 
the plasma flow pattern for this are shown in Figs. 3a and 3b, respectively. Com- 
parisons of the converged values of the square of growth rates from different 
Solov&v equilibria obtained from various ideal MHD stability codes [ ll] are sum- 
marized in Table I. For most of the cases, our results are roughly between those of 
PEST [l] and ERATO [2] codes. These small discrepancies may be due to dif- 
ferent mapping codes used in these stability codes. We note that the difference in ;.’ 
for ail stability codes are larger when vacuum solutions are required (i.e., il> 1 I, 
which may be related to different methods of solving the vacuum problem in ail 
stability codes. 

VI. APPLICATIONS 

In this section we present several test cases of calculating eigenvalues from 
numerical equilibria. NOVA can make use of an arbitrarily spaced radial mesh and 
has the opinion of rezoning this mesh to allow various nodes of the radial finite 
elements to coincide with the rational surfaces. Our experience in choosing various 
O-coordinate systems does not warrant an optimal one. The best choice of B may be 
determined by the requirements for an accurate and efficient calculation of the 
toroidal equilibrium quantities as well as accurate and efficient representation of the 
eigenfunction involved. Since these issues are problem dependent, the ability of 
choosing arbitrary Jacobian (or &coordinate) and arbitrary radial mesh is essential, 
It provides not only the extra confidence in the results which come from obtaining 
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consistent eigenvalues from different coordinate systems, but also the physical 
insight of the MHD perturbations. In general, because it distributes mesh points 
uniformly over the plasma surfaces, the equal arc-length &coordinate is usually a 
good choice. For a small aspect ratio bean-shaped tokamak where the PEST 8- 
coordinate does not sample the region on the outside of the torus very well, the 
equal arc-length system is indeed much superior. We have applied our code to 
study external kinks, internal kinks, toroidicity-induced global Alfven modes, and 
the continuum modes for toroidal equilibria of various shapes and ,G values. The 
results are described below. 

V1.a. External Kink Modes 

The external kink instabilities are studied for a high-p bean-shaped equilibrium 
[19] with the plasma surface defined by X= To + p cos 1, Z = Ep sin ,?, 
p=A(l +Bcos t), l=Csin t, with z0=2.71, E= 0.895, A = 1, B = 0.6, and 
C= 1.693. This corresponds to d/2a = 0.3035, b/a = 1.7385, and R/A = 3.449, as 
shown in Fig. 4. The equilibrium profiles are defined by P( JI) = PO( 1.003 - $)‘, 
and d 1’) = C,‘= 0 qi I’i, where ~‘=@/3$, P,=O.109, q(O)= 1.03, q(l)=4.2, 
q’(O) = 0.84375, q’( 1) = 9.0, and d$ = 0.248 is the plasma poloidal flux. The average 
beta is (p) = 8.75%. Note that 4;s are uniquely determined by q’(O), q(l), q’(0). 
and q’( 1). The external kink mode has the eigenvalue y2 = 3.5 and has maximum 
amplitude near the plasma surface. Therefore an optimal radial coordinate is the 
uniform $-grid because it samples more grid points near the edge. The convergence 
in 8 (i.e., Fourier harmonics) is much more rapid for the equal arc length B-coor- 
dinate, because the PEST d-grid concentrates more grid points around the tips of 
the beam, but the mode has more weight toward the outside of the torus. In fact, 
the equal arc length &coordinate is rapidly convergent with an error of less than 
2% of its converged value with -5 < 172 d 8. Comparable accuracy with the PEST 
&coordinate would require approximately three times as many Fourier components 
for the positive maximum m, i.e., - 5 6 IM 6 25. These results are obtained by our 
NOVA code and can be clearly seen in Figs. 5 and 6 which show the poloidal com- 

- 

T 
2b 

FIG. 4. The flux surface of a typical high-8 bean-shaped tokamak equilibrium. 
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FIG. 5. The poloidal components of the converged II = 1 free boundary external kink mode eigen- 
function 5, versus rl/. It is computed with an equal arc length d-coordinate for a bean-shaped equilibrium 
with the parameters T0 = 2.71, d/h = 0.3035, h.‘a = 1.7385. R,‘a = 3.449, </?),, = 8.75%. q(O) = 1.03. 
qf I) = 4.2, P, = 0.109. The eigenvalue is yz = 3.5 and the q-profile is also shovvn. 

ponents of converged eigenfunction tti for the equal arc length &coordinate and the 
PEST &coordinate, respectively. The plasma flow pattern on the 4 = 0 plane is 
shown in Fig. 7 where large flow is clearly seen on the outside of the torus. Thus. 
the external kink can be effectively stabilized by placing a metal plate on the out- 
side of the torus to stop or reduce the flow. 

FIG. 6. The poloidal components of the converged n = 1 Free boundary external kink mode eigen- 
function ($ versus I) with PEST O- coordinate for the same bean-shaped equilibrium as in Fig 5. 
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FIG. 7. The projection of the plasma flow on the 4 = 0 plane is shown for the n = 1 free boundary 
external kink mode for the same case as in Fig. 5. 

VI.b. Internal Kink Modes 

The n = 1 ideal MHD internal kink is usually unstable in tokamak plasmas when 
qaxis < 1 [20] so that the q = 1 surface lies within the plasma and B is finite. The 
growth rate of this mode is typically a factor of a2 smaller than the more dangerous 
external kinks, where E is the inverse aspect ratio. Its eigenfunction kti is localized 
inside the q = 1 surface and decreases rapidly to zero outside. Because of the small 
growth rate and the need to resolve the q 6 1 region accurately, studying this mode 
provides a challenge for testing a stability code. A specially tailored r-grid with grid 
packing near the q = 1 surface has been used to obtain accurate results. The tailored 
r-grid usually produces faster convergence than the tailored $-grid when the q= 1 
surface is closer to the magnetic axis. This is because the r-grid weights the region 
near the magnetic axis more heavily than the $-grid. In general. accurate represen- 
tation of the eigenfunction near the rational surfaces is also of critical importance to 
boundary layer treatment of nonideal instabilities, such as the resistive tearing 
modes, kinetic fishbone modes, etc. 

We consider a PDX-type equilibrium with circular plasma surface computed 
from a flux equilibrium code with the profiles P(J)) = P,(l - y’)‘, q(y) = 
q(O)+~(q(l)-q(O~+(~-~1)Cq’(l)-q(l)+q(O)l~1-~,)l(~-~g,)}, where ys= 
C~‘~~!-q~~~+~~~~ll{q’~~~+q’~~~-~2cq~~~-q~~~l}, y=$/A$. The parameters 
are All/ =0.0609, (/?),v= 1.277%, R= 1.43, R/a= 3.4, Po=0.02456, q(0) =0.8, 
q( 1) = 2.85, q’(0) = 13.857, and q’(1) = 106.88, For the n = 1 fixed boundary mode 
the eigenvalue is 1j2 = 2.306 x lop3 and the eigenfunction 5,,, versus r is shown in 
Fig. 8. The q,profile is also shown in Fig. 8. The plasma flow pattern at 4 = 0, 
shown in Fig. 9, clearly indicates large flow at the q = 1 surface with the dominant 
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FIG. 8. The poloidal components of the n = 1 fixed boundary internal kink mode eigenfunction tti 
versus I’. The equilibrium has a circular plasma surface with R = 1.43, R/a = 3.4. q(O) =0.8, q(l) = 7.85. 
P, = 0.02456. (p),, = 1.377%. The eigenvalue is )12 = 2.306 x 10-j and the cl-profi!e is also shown. 

~II = 1 component. The computation was carried out with the equai arc-length B 
coordinate, and the dominant poloidal harmonics are I < w1< 3. Because of the 
relatively high growth rate, we do not have to pack many grid points near the q = t 
and 4 = 2 surfaces. However, for smaller growth rates the eigenfunction exhibits a 
sharp gradient, and local packing of more grid points near singular surfaces may be 
necessary. 
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FIG. 9. The projection of the displacement vector 5 onto the d = 0 plane for the r? = 1 Axed boundar) 
internal kink mode shown in Fig. 8. 
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VI.c. Toroidicity-Induced Alfokn Waves 

Recent studies of the stable shear Alfven spectrum for toroidal plasmas using the 
ideal MHD model have led to the discovery of the discrete toroidicity-induced 
AlfvCn waves [9]. The toroidal coupling effects due to a nonuniform magnetic field 
over a magnetic surface can cause interactions among the neighboring poloidal har- 
monics and can break up the shear Alfven continuous spectrum resulting in con- 
tinuum gaps. In addition, discrete, global, toroidicity-induced eigenmodes were 
found with frequencies inside the continuum gaps. The existence of these 
toroidicity-induced shear Alfvtn eigenmodes suggests a new efficient Alfven wave 
heating scheme. In addition, instabilities can be excited by tapping the free energy 
of energetic particles associated with the plasma inhomogeneities through wave- 
particle resonances. Fig. 10 shows the ploidal harmonics of the II = 1 fixed boundary 
eigenfunction tti versus $ for a low-p, circular numerical equilibrium. The 
numerical equilibrium has the same P($) and q(t,b) functional forms as in Fig. 8 but 
with the parameters: P, = 4.55 x 10p4, R/A = 4, R = 1, q(0) = 1.05, q( 1) = 2.3, 
q’(O) = 36.12, q’( 1) = 140, d+ = 0.020768, and (B),, = 0.0407%. The eigenfre- 
quency of this fixed boundary n = 1 mode is o2 = 0.5. The q-profile is also shown in 
Fig. 10. It is clear from Fig. 10 that primarily m = 1 and 2 harmonics dominate 
around the q = 1.5 surface with a small coupling to 172 = 3 harmonics toward the 
plasma surface. Projection of the displacement vector 6 onto the 4 = 0 plane is 
shown in Fig. 11, where the plasma vortices corresponding to nz = 1 and 2 har- 
monics are clearly seen. Note that, due to the regular mode structure and the 
existence of the continuum gap, the numerical computation is rather easy. 

FIG. 10. The poloidal harmonics of the n = 1 fixed boundary toroidicity-induced shear Alfvtn eigen- 
mode, lti, versus r for a low B circular equilibrium with the parameters: R = 1, R/0=4, q(O)= 1.03, 
q(1)=2.3, P,=4.55x lo-“, and (fi),,=O.O407%. The q-profile is also shown and the eigenvalue is 
a? = 0.5. 



FIG. 11. The projection of the displacement vector 5 on to the $J = 0 plane for the n = 1 fixed Sotill- 
dary toroidicity-induced shear AlfvCn eigenmode as shown in Fig. !O. 

VI.d. Shear AljGn Continuum Mode 

The continuum spectrum is due to the singular nature of the ideal MHD modei 
[13] and is a result of the noninvertibility [9, 141 of the surface operator E in 
Eq. (25). The continuum eigenfunctions have singular behavior somewhere inside 
the plasma. At the resonance surface GO, the eigenfunction can behave [21] !ccally 
as [C, ln($ -- $O)$ C2]. The constant C, can have an arbitrary finite discontinuity. 

-1 0 0.2 0.4 06 0.8 I.0 

Frc. 12. The poloidal harmonics of the n= 1 fixed boundary continuum mode 5, versus F for t,4e 
same equilibrium as in Fig. 10. The eigenvalue is wz =0.30X and the q-profile is aiso showc. 

581 7, l-10 
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FIG. 13. The n = 1 continuous spectrum for the same equilibrium as in Fig. 12. 

which provides the possibility of satisfying the boundary conditions for a con- 
tinuous set of eigenvalues and leads to a continuous spectrum. In numerical 
calculations the continuous spectrum is approximated by a dense set of discrete 
eigenvalues with the number of discrete eigenvalues proportional to the number of 
grid points. These numerical discrete eigenvalues are only the approximate 
solutions of Eq. (30) and we do not encounter difficulties in inverting the surface 
operator E in Eq. (25). Figure 12 shows the eigenfunction of the n = 1 fixed boun- 
dary continuum mode with frequency o* =0.302 for the same equilibrium as in 
Fig. 10. Figure 13 shows the approximate continuous spectrum [9] from the 
solutions of Eq. (30) for the same numerical grid points as used in Fig. 12. Compar- 
ing Fig. 12 with Fig. 13, our numerical solution tti correctly shows the In I$ - rc/Ol 
behavior near the singular surface of the m = 2 mode and a jump discontinuity near 
the singular surface of the /n = 1 mode. These singular surfaces are the locations of 
the singularities of the surface operator E in Eq. (25) for the continuum uz = 0.302. 

VII. CONCLUSION 

In this paper we have presented a nonvariational ideal MHD stability code 
(NOVA) which represents an accurate and eflicient approach for determining the 
ideal MHD spectrum and stability of axisymmetric toroidal confinement systems. 
In a general flux coordinate system the code makes use of the cubic B-spline finite 
elements in the minor radius direction and Fourier expansion in the poloidal direc- 
tion. The ideal MHD eigenmode equations are reduced to a set of coupled second 
order differential equations in the minor radius coordinate. With the cubic B-spline 
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finite elements, we are reduced to solving a matrix equation with nontrivial 
solutions. In comparison with the existing variational codes [l-6], the NOVA code 
can produce more accurate results with less computational efforts. The code is fast 
and efficient on a CRAY-1 computer so that it is written in the interactive mode 
which can provide more flexible usages. The code has also been applied to several 
typical problems to illustrate the convergence properties with diiferent coordinate 
systems. 

The improved efficiency over the previous variational codes may allow for an 
examination of the stability of fully three-dimensional magnetic confinement 
devices, such as stellarators. Finally, since the numerical procedure does not rely on 
the variational energy principles, this successful nonvariational approach can be 
easily extended to other physical problems where the eigenmode equations are non- 
Hermitian [22]. 

The authors would like to thank Dr. D. Monticello for useful discussions on the flux equilibrium and 
mapping codes. This work is supported by U.S. DOE Contract DE-ACO?-76CHO-3073. 
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